skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Piestun, Rafael"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Focusing light through turbid media using wavefront shaping generally requires a noninvasive guide star to provide feedback on the focusing process. Here we report a photoacoustic guide star mechanism suitable for wavefront shaping through a scattering wall that is based on the fluctuations in the photoacoustic signals generated in a micro-vessel filled with flowing absorbers. The standard deviation of photoacoustic signals generated from random distributions of particles is dependent on the illumination volume and increases nonlinearly as the illumination volume is decreased. We harness this effect to guide wavefront shaping using the standard deviation of the photoacoustic response as the feedback signal. We further demonstrate sub-acoustic resolution optical focusing through a diffuser with a genetic algorithm optimization routine. 
    more » « less
  2. Within the family of super-resolution (SR) fluorescence microscopy, single-molecule localization microscopies (PALM[1], STORM[2] and their derivatives) afford among the highest spatial resolution (approximately 5 to 10 nm), but often with moderate temporal resolution. The high spatial resolution relies on the adequate accumulation of precise localizations, which requires a relatively low density of bright fluorophores. Several methods have demonstrated localization at higher densities in both two dimensions (2D)[3, 4] and three dimensions (3D)[5-7]. Additionally, with further advancements, such as functional super-resolution[8, 9] and point spread function (PSF) engineering with[8-11] or without[12] multi-channel observations, extra information (spectra, dipole orientation) can be encoded and recovered at the single molecule level. However, such advancements are not fully extended for high-density conditions in 3D. In this work, we adopt sparse recovery using simple matrix/vector operations, and propose a systematic progressive refinement method (dubbed as PRIS) for 3D high-density condition. We also generalized the method for PSF engineering, multichannel and multi-species observations using different forms of matrix concatenations. Specifically, we demonstrate reconstructions with both double-helix and astigmatic PSFs, for both single and biplane settings. We also demonstrate the recovery capability for a mixture of two different color species. 
    more » « less
  3. Abstract The last decade has seen the development of a wide set of tools, such as wavefront shaping, computational or fundamental methods, that allow us to understand and control light propagation in a complex medium, such as biological tissues or multimode fibers. A vibrant and diverse community is now working in this field, which has revolutionized the prospect of diffraction-limited imaging at depth in tissues. This roadmap highlights several key aspects of this fast developing field, and some of the challenges and opportunities ahead. 
    more » « less